Luminescence Properties of Green Phosphor Ca2Ga2(Ge1-xSix)O7:y%Eu2+ and Application

Author:

Kong Xiangqian123ORCID,Qiu Zhihua23,Wu Lina234,Lei Yunfei1,Chi Lisheng23ORCID

Affiliation:

1. College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350116, China

2. Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350116, China

3. Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

4. College of Chemistry, Fuzhou University, Fuzhou 350116, China

Abstract

Rare earth luminescent materials demonstrate significant advantages in lighting and energy saving, and detection etc. In this paper, a series of Ca2Ga2(Ge1-xSix)O7:y%Eu2+ phosphors were synthesized by high-temperature solid-state reaction and characterized by X-ray diffraction and luminescence spectroscopy methods. The powder X-ray diffraction patterns reveal that all the phosphors are isostructural with a space group of P4¯21m. The excitation spectra of Ca2Ga2(Ge1-xSix)O7:1%Eu2+ phosphors exhibit significant overlapping of the host and the Eu2+ absorption bands, which facilitates Eu2+ absorbing the energy to increase its luminescence efficiency when excited by visible photons. The emission spectra show that the Eu2+ doped phosphors have a broad emission band with a peak centered at 510 nm arising from the 4f65d1→4f7 transition. Variable temperature fluorescence reveals that the phosphor has a strong luminescence at low temperature but has a severe thermal quenching effect when temperature rises. The optimal Ca2Ga2(Ge0.5Si0.5)O7:1.0%Eu2+ phosphor shows promise for application in the field of fingerprint identification based on the experimental results.

Funder

Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3