Decarburization of Wire-Arc Additively Manufactured ER70S-6 Steel

Author:

Aprilia Aprilia1ORCID,Zhai Wengang2,Guo Yibo2,Aishwarya 3,Shandro Robert3,Zhou Wei12ORCID

Affiliation:

1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

2. Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

3. Cetim-Matcor Technology & Services Pte. Ltd., 3 Seletar Aerospace Link, Singapore 797550, Singapore

Abstract

Decarburization is an unwanted carbon-loss phenomenon on the surfaces of a material when they are exposed to oxidizing environments at elevated temperatures. Decarburization of steels after heat treatment has been widely studied and reported. However, up to now, there has not been any systematic study on the decarburization of additively manufactured parts. Wire-arc additive manufacturing (WAAM) is an efficient additive manufacturing process for producing large engineering parts. As the parts produced by WAAM are usually large in size, the use of a vacuum environment to prevent decarburization is not always feasible. Therefore, there is a need to study the decarburization of WAAM-produced parts, especially after the heat treatment processes. This study investigated the decarburization of a WAAM-produced ER70S-6 steel using both the as-printed material and samples heat-treated at different temperatures (800 °C, 850 °C, 900 °C, and 950 °C) for different durations (30 min, 60 min, and 90 min). Furthermore, numerical simulation was carried out using Thermo-Calc computational software to predict the carbon concentration profiles of the steel during the heat treatment processes. Decarburization was found to occur not only in the heat-treated samples but also on the surfaces of the as-printed parts (despite the use of Ar for shielding). The decarburization depth was found to increase with an increase in heat treatment temperature or duration. The part heat-treated at the lowest temperature of 800 °C for merely 30 min was observed to have a large decarburization depth of about 200 μm. For the same heating duration of 30 min, an increase in temperature of 150 °C to 950 °C increased the decarburization depth drastically by 150% to 500 μm. This study serves well to demonstrate the need for further study to control or minimize decarburization for the purpose of ensuring the quality and reliability of additively manufactured engineering components.

Funder

Cetim-Matcor Technology & Services Pte. Ltd.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3