Dry Friction Properties of Diamond-Coated Silicon Carbide

Author:

Du Yuefeng12,Xie Fangmin2,Wang Jian2,Xu Bin2,Chen Huanyi1,Yan Bineng2,Wu Yanjiao2,Huang Weifeng3,Li He14

Affiliation:

1. Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China

2. Ningbo FLK Technology Co., Ltd., Ningbo 315104, China

3. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China

4. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Dry friction between seal faces, caused by unstable or extreme operating conditions, significantly affects the running stability and service life of mechanical seals. Therefore, in this work, nanocrystalline diamond (NCD) coatings were prepared on the surface of silicon carbide (SiC) seal rings by hot filament chemical vapor deposition (HFCVD). The friction test results under dry environment reveals that the coefficient of friction (COF) of SiC–NCD seal pairs is about 0.07–0.09, which were reduced by 83–86% compared to SiC–SiC seal pairs. The wear rate of SiC–NCD seal pairs is relatively low, ranging from 1.13 × 10−7 mm3/N·m to 3.26 × 10−7 mm3/N·m under different test conditions, which is due to the fact that the NCD coatings prevent adhesive and abrasive wear between the SiC seal rings. The analysis and observation of the wear tracks illustrate that the excellent tribological performance of the SiC–NCD seal pairs is due to a self-lubricating amorphous layer formed on the worn surface. In conclusion, this work highlights a pathway to enable mechanical seals to satisfy the high application requirements under highly parametric working conditions.

Funder

National Key R&D Program of China

the Science and Technology Innovation 2025 Major Projects, Ningbo, China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3