The Kelch/Nrf2 Antioxidant System as a Target for Some Marine Fungal Metabolites

Author:

Yurchenko Ekaterina A.1ORCID,Khmel Olga O.2,Nesterenko Liliana E.1,Aminin Dmitry L.13ORCID

Affiliation:

1. G.B. Elyakov Pacific Institute of Bioorganic Chemistry Far Eastern Branch of Russian Academy of Science, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia

2. Advance Engineering School, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia

3. Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shin-Chuan 1st Road, Sanmin District, Kaohsiung City 80708, Taiwan

Abstract

Marine fungal metabolites often exhibit antioxidant activity, but their effects on the Keap1/Nrf2 cellular system are rarely studied, possibly due to insufficient isolated amounts. In this work, we used a bioinformatics approach to evaluate the ability of some promising cytoprotective compounds to bind Kelch domain of Keap1 protein, and thus inhibit its interaction with Nrf2. The molecular docking data suggested that gliorosein, niveoglaucin A, 6-hydroxy-N-acetyl-β-oxotryptamine, 4-hydroxyscytalone and 4-hydroxy-6-dehydroxyscytalone can form the hydrogen building with Arg415 or Arg483 amino acid residues of P1-P2 sub-pockets in the Nrf2 binding site of Keap1′s Kelch domain. These positions of the small molecules in the Kelch domain of Keap1 can inhibit the interaction of Keap1 with Nrf2 and enhance the nuclear translocation of Nrf2 from cytosol that can result in overexpression of relative genes. This assumption, based on virtual screening of a number of low molecular weight metabolites of marine fungi, makes them promising for further studies.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3