The Effect of Ageing on Phase Transformations and Mechanical Behaviour in Ni-Rich NiTi Alloys

Author:

Ratajski Jerzy1,Bałasz Błażej2ORCID,Mydłowska Katarzyna1ORCID,Pancielejko Mieczysław3ORCID,Szparaga Łukasz1

Affiliation:

1. Department of Biomedical Engineering, Faculty of Mechanical and Power Engineering, Koszalin University of Technology (KUT), ul. Śniadeckich 2, 75-453 Koszalin, Poland

2. Rapid Prototyping Center, Faculty of Mechanical and Power Engineering, Koszalin University of Technology (KUT), ul. Śniadeckich 2, 75-453 Koszalin, Poland

3. Department of Technical Physics and Nanotechnology, Faculty of Mechanical and Power Engineering, Koszalin University of Technology (KUT), ul. Śniadeckich 2, 75-453 Koszalin, Poland

Abstract

In this article, the results of research on a NiTi alloy with a high nickel content (51.7 at.%), produced using the additive technology SLM method and subjected to isothermal ageing after solution annealing, are presented. The study involved the determination of the sequence of phase transformations occurring using differential scanning calorimetry (DSC) and the determination of the temperature range of these transformations. In parallel, the phase composition was determined using the XRD method; the hardness and the Young’s modulus were also determined. The analysis of the DSC results obtained indicates the following characteristic features of the NiTi alloy, which change with ageing time: (1) During cooling (from +150 °C to −50 °C), the type of transformation changes from a one-step transformation after solution annealing to a two-step transformation after the ageing process over 1, 20, and 100 h at 500 °C; (2) during heating (from −50 °C to +150 °C) for all the samples, regardless of the ageing time, only a one-step transformation from martensite M(B19′) to austenite A(B2) is observed; (3) the temperature at which the transformation starts increases with the ageing time; (4) the width of the total temperature range of the transformation M(B19′) → A(B2) during heating changes from large (ΔT = 49.7 °C), after solution annealing, to narrow (ΔT = 19.3 °C and ΔT = 17.9 °C after 20 h and 100 h of ageing); and, most importantly, (5) a comparison with the literature data shows that, irrespective of the composition of the NiTi alloy and the manufacturing technology of the alloy samples (regardless of whether this was traditional or additive technology), a sufficiently long ageing process period leads to the occurrence of the martensite → austenite transformation in the same temperature range.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3