Structural Changes, Biological Consequences, and Repurposing of Colchicine Site Ligands

Author:

Montecinos Felipe1ORCID,Sackett Dan L.2

Affiliation:

1. Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA

2. Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA

Abstract

Microtubule-targeting agents (MTAs) bind to one of several distinct sites in the tubulin dimer, the subunit of microtubules. The binding affinities of MTAs may vary by several orders of magnitude, even for MTAs that specifically bind to a particular site. The first drug binding site discovered in tubulin was the colchicine binding site (CBS), which has been known since the discovery of the tubulin protein. Although highly conserved throughout eukaryotic evolution, tubulins show diversity in their sequences between tubulin orthologs (inter-species sequence differences) and paralogs (intraspecies differences, such as tubulin isotypes). The CBS is promiscuous and binds to a broad range of structurally distinct molecules that can vary in size, shape, and affinity. This site remains a popular target for the development of new drugs to treat human diseases (including cancer) and parasitic infections in plants and animals. Despite the rich knowledge about the diversity of tubulin sequences and the structurally distinct molecules that bind to the CBS, a pattern has yet to be found to predict the affinity of new molecules that bind to the CBS. In this commentary, we briefly discuss the literature evidencing the coexistence of the varying binding affinities for drugs that bind to the CBS of tubulins from different species and within species. We also comment on the structural data that aim to explain the experimental differences observed in colchicine binding to the CBS of β-tubulin class VI (TUBB1) compared to other isotypes.

Funder

Intramural Research Program of the National Institute of Arthritis and Musculoskeletal and Skin Diseases

Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3