Bidirectional TRP/L Type Ca2+ Channel/RyR/BKCa Molecular and Functional Signaloplex in Vascular Smooth Muscles

Author:

Dryn Dariia O.1,Melnyk Mariia I.12,Melanaphy Donal3,Kizub Igor V.4ORCID,Johnson Christopher D.5,Zholos Alexander V.2ORCID

Affiliation:

1. O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 01024 Kyiv, Ukraine

2. ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine

3. Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK

4. Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA

5. Centre for Biomedical Sciences Education, Queen’s University Belfast, Whitla Medical Building, Belfast BT9 7BL, UK

Abstract

TRP channels are expressed both in vascular myocytes and endothelial cells, but knowledge of their operational mechanisms in vascular tissue is particularly limited. Here, we show for the first time the biphasic contractile reaction with relaxation followed by a contraction in response to TRPV4 agonist, GSK1016790A, in a rat pulmonary artery preconstricted with phenylephrine. Similar responses were observed both with and without endothelium, and these were abolished by the TRPV4 selective blocker, HC067047, confirming the specific role of TRPV4 in vascular myocytes. Using selective blockers of BKCa and L-type voltage-gated Ca2+ channels (CaL), we found that the relaxation phase was inducted by BKCa activation generating STOCs, while subsequent slowly developing TRPV4-mediated depolarisation activated CaL, producing the second contraction phase. These results are compared to TRPM8 activation using menthol in rat tail artery. Activation of both types of TRP channels produces highly similar changes in membrane potential, namely slow depolarisation with concurrent brief hyperpolarisations due to STOCs. We thus propose a general concept of bidirectional TRP-CaL-RyR-BKCa molecular and functional signaloplex in vascular smooth muscles. Accordingly, both TRPV4 and TRPM8 channels enhance local Ca2+ signals producing STOCs via TRP–RyR–BKCa coupling while simultaneously globally engaging BKCa and CaL channels by altering membrane potential.

Funder

Ministry of Education and Science of Ukraine

National Academy of Science of Ukraine

British Heart Foundation

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3