Opposing Spatially Segregated Function of Endogenous GDNF-RET Signaling in Cocaine Addiction

Author:

Garton Daniel R.1,Turconi Giorgio1,Iivanainen Vilma1,Andressoo Jaan-Olle12ORCID

Affiliation:

1. Department of Pharmacology, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland

2. Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society (NVS), Karolinska Institutet, 17177 Stockholm, Sweden

Abstract

Cocaine addiction is a serious condition with potentially lethal complications and no current pharmacological approaches towards treatment. Perturbations of the mesolimbic dopamine system are crucial to the establishment of cocaine-induced conditioned place preference and reward. As a potent neurotrophic factor modulating the function of dopamine neurons, glial cell line-derived neurotrophic factor (GDNF) acting through its receptor RET on dopamine neurons may provide a novel therapeutic avenue towards psychostimulant addiction. However, current knowledge on endogenous GDNF and RET function after the onset of addiction is scarce. Here, we utilized a conditional knockout approach to reduce the expression of the GDNF receptor tyrosine kinase RET from dopamine neurons in the ventral tegmental area (VTA) after the onset of cocaine-induced conditioned place preference. Similarly, after establishing cocaine-induced conditioned place preference, we studied the effect of conditionally reducing GDNF in the ventral striatum nucleus accumbens (NAc), the target of mesolimbic dopaminergic innervation. We find that the reduction of RET within the VTA hastens cocaine-induced conditioned place preference extinction and reduces reinstatement, while the reduction of GDNF within the NAc does the opposite: prolongs cocaine-induced conditioned place preference and increases preference during reinstatement. In addition, the brain-derived neurotrophic factor (BDNF) was increased and key dopamine-related genes were reduced in the GDNF cKO mutant animals after cocaine administration. Thus, RET antagonism in the VTA coupled with intact or enhanced accumbal GDNF function may provide a new approach towards cocaine addiction treatment.

Funder

Academy of Finland

Sigrid Juselius Foundation, Center of Innovative Medicine (CIMED), Hjärnfonden, Swedish Research Council

Helsinki Institute of Life Science

Center of Innovative Medicine

University of Helsinki Doctoral Programme Brain and Mind

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3