Using Data Augmentation and Time-Scale Modification to Improve ASR of Children’s Speech in Noisy Environments

Author:

Kathania Hemant KumarORCID,Kadiri Sudarsana ReddyORCID,Alku Paavo,Kurimo Mikko

Abstract

Current ASR systems show poor performance in recognition of children’s speech in noisy environments because recognizers are typically trained with clean adults’ speech and therefore there are two mismatches between training and testing phases (i.e., clean speech in training vs. noisy speech in testing and adult speech in training vs. child speech in testing). This article studies methods to tackle the effects of these two mismatches in recognition of noisy children’s speech by investigating two techniques: data augmentation and time-scale modification. In the former, clean training data of adult speakers are corrupted with additive noise in order to obtain training data that better correspond to the noisy testing conditions. In the latter, the fundamental frequency (F0) and speaking rate of children’s speech are modified in the testing phase in order to reduce differences in the prosodic characteristics between the testing data of child speakers and the training data of adult speakers. A standard ASR system based on DNN–HMM was built and the effects of data augmentation, F0 modification, and speaking rate modification on word error rate (WER) were evaluated first separately and then by combining all three techniques. The experiments were conducted using children’s speech corrupted with additive noise of four different noise types in four different signal-to-noise (SNR) categories. The results show that the combination of all three techniques yielded the best ASR performance. As an example, the WER value averaged over all four noise types in the SNR category of 5 dB dropped from 32.30% to 12.09% when the baseline system, in which no data augmentation or time-scale modification were used, was replaced with a recognizer that was built using a combination of all three techniques. In summary, in recognizing noisy children’s speech with ASR systems trained with clean adult speech, considerable improvements in the recognition performance can be achieved by combining data augmentation based on noise addition in the system training phase and time-scale modification based on modifying F0 and speaking rate of children’s speech in the testing phase.

Funder

Academy of Finland

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3