Effect of Aspect Ratio of Ferroelectric Nanofilms on Polarization Vortex Stability under Uniaxial Tension or Compression

Author:

Jiang Wenkai1,Wang Sen1,Yang Xinhua2,Yang Junsheng1

Affiliation:

1. School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430048, China

2. School of Transportation, Civil Engineering and Architecture, Foshan University, Foshan 528200, China

Abstract

Mastering the variations in the stability of a polarization vortex is fundamental for the development of ferroelectric devices based on polarization vortex domain structures. Some phase field simulations were conducted on PbTiO3 nanofilms with an initial polarization vortex under uniaxial tension or compression to investigate the conditions of vortex instability and the effects of aspect ratio of nanofilms and temperature on them. The instability of a polarization vortex is strongly dependent on aspect ratio and temperature. The critical compressive stress increases with decreasing aspect ratio under the action of compressive stress. However, the critical tensile stress first decreases and then increases with decreasing aspect ratio, then continues to decrease. There are two inflection points in the curve. In addition, an elevated temperature makes both the critical tensile and compressive stresses decline, and will also cause the aspect ratio corresponding to the inflection point to decrease. These are very important for the design of promising nano-ferroelectric devices based on polarization vortices to improve their performance while maintaining storage density.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3