Moisture Transport in Loose Fibrous Insulations under Steady-State Boundary Conditions

Author:

Kosiński Piotr1ORCID

Affiliation:

1. Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Heweliusza 10, 10-724 Olsztyn, Poland

Abstract

This research aimed to compare the transport capacity of loose-fill mineral wool, cellulose fibers, and wood wool to transfer moisture under steady-state conditions. The tests were carried out in the heat flow meter apparatus, which created a constant thermal field, limiting samples of sorptive moistened materials. The thermal conductivity, stabilization time, and moisture content of the samples were measured. Based on the variation in the results, the dynamism of moisture transport in the materials was determined. Mineral wool samples showed the lowest sorption. As a result, the moisture transport in this material stopped the fastest. In the case of cellulose and wood fibers, moisture transport continued throughout the whole test procedure. It was noted that the amount of moisture transport is influenced primarily by the structure of the fibers, the moisture content, and the possible presence of air in the pores. The wetter the material, the faster the transport. The dynamism of moisture transport according to trends of thermal conductivity changes over time was analyzed. The greater the slope of the linear regression line, the greater the dynamics of change. The smallest dynamics of change were found for mineral wool, for which the measured slope was between −0.008 and −0.033. For cellulose and wood wool, the range of slope was from −0.141 to −0.210, and from −0.162 to −0.211, respectively. The results of this research may provide the basis for further work on buffering moisture in the adjacent internal layers of the frame walls.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3