Differential Activation of pERK1/2 and c-Fos Following Injury to Different Regions of Primary Sensory Neuron

Author:

Miao Bei,Yao HongyuORCID,Chen Peng,Song Xue-Jun

Abstract

Nerve injury causes hyperexcitability of the dorsal root ganglion (DRG) and spinal dorsal horn (DH) neurons, which results in neuropathic pain. We have previously demonstrated that partial dorsal rhizotomy (PDR) produced less severe pain-like behavior than chronic constriction injury (CCI) or chronic compression of DRG (CCD) and did not enhance DRG neuronal excitability. However, the mechanisms underlying such discrepancy remain unclear. This study was designed to compare the activation of phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) in DRG and DH, and c-Fos in DH following treatments of CCI, CCD, and PDR. We confirmed that thermal hyperalgesia produced by PDR was less severe than that produced by CCI or CCD. We showed that pERK1/2 in DRG and DH was greatly activated by CCI or CCD, whereas PDR produced only transient and mild pERK1/2 activation. CCI, CCD, and PDR induced robust c-Fos expression in DH; nevertheless, c-Fos+ neurons following PDR were much fewer than that following CCI or CCD. Blocking retrograde axonal transport by colchicine proximal to the CCI injury site diminished thermal hyperalgesia and inhibited pERK1/2 and c-Fos activation. These findings demonstrate that less severe pain-like behavior produced by PDR than CCI or CCD attributes to less activation of pERK1/2 and c-Fos. Such neurochemical activation partially relies on retrograde axonal transport of certain “injury signals” from the peripheral injured site to DRG somata.

Funder

Foundation of Shenzhen Science and Technology Innovation Committee

Southern University of Science and Technology

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3