Locating Tea Bud Keypoints by Keypoint Detection Method Based on Convolutional Neural Network

Author:

Cheng Yifan12,Li Yang2,Zhang Rentian2,Gui Zhiyong2,Dong Chunwang3ORCID,Ma Rong1

Affiliation:

1. College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China

2. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China

3. Tea Research Institute of Shandong Academy of Agricultural Sciences, Jinan 250100, China

Abstract

Tea is one of the most consumed beverages in the whole world. Premium tea is a kind of tea with high nutrition, quality, and economic value. This study solves the problem of detecting premium tea buds in automatic plucking by training a modified Mask R-CNN network for tea bud detection in images. A new anchor generation method by adding additional anchors and the CIoU loss function were used in this modified model. In this study, the keypoint detection branch was optimized to locate tea bud keypoints, which, containing a fully convolutional network (FCN), is also built to locate the keypoints of bud objects. The built convolutional neural network was trained through our dataset and obtained an 86.6% precision and 88.3% recall for the bud object detection. The keypoint localization had a precision of 85.9% and a recall of 83.3%. In addition, a dataset for the tea buds and picking points was constructed in study. The experiments show that the developed model can be robust for a range of tea-bud-harvesting scenarios and introduces the possibility and theoretical basis for fully automated tea bud harvesting.

Funder

Scientific Research Foundation of Zhejiang A and F University

Zhejiang Provincial Natural Science Foundation of China

Central Public-Interest Scientific Institution Basal Research Fund

Key R&D Program of Zhejiang

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3