Critical Role of Rubber Functionalities on the Mechanical and Electrical Responses of Carbon Nanotube-Based Electroactive Rubber Composites

Author:

Alam Md1ORCID,Azam Siraj1ORCID,Yun Jongwan1,Park Sang-Shin1ORCID

Affiliation:

1. School of Mechanical Engineering, Yeungnam University, 280, Daehak-ro, Gyeongsan 38541, Republic of Korea

Abstract

Carbon nanomaterials, particularly carbon nanotubes (CNTs), are widely used as reinforcing fillers in rubber composites for advanced mechanical and electrical applications. However, the influence of rubber functionality and its interactions with CNTs remains underexplored. This study investigates electroactive elastomeric composites fabricated with CNTs in two common diene rubbers: natural rubber (NR) and acrylonitrile-butadiene rubber (NBR), each with distinct functionalities. For NR-based composites containing 2 vol% CNTs, mechanical properties, such as elastic modulus (2.24 MPa), tensile strength (12.48 MPa), and fracture toughness (26.92 MJ/m3), show significant improvements of 125%, 215%, and 164%, respectively, compared to unfilled rubber. Similarly, for NBR-based composites, the elastic modulus (5.46 MPa), tensile strength (13.47 MPa), and fracture toughness (82.89 MJ/m3) increase by 94%, 22%, and 65%, respectively, over the unfilled system. Although NBR-based composites exhibit higher mechanical properties, NR systems show more significant improvements, suggesting stronger chemical bonding between NR chains and CNTs, as evidenced by dynamic mechanical, X-ray diffraction, thermogravimetric, and thermodynamic analyses. The NBR-based composite at 1 vol% CNT content exhibits 261% higher piezoresistive strain sensitivity (GF = 65 at 0% ≤ Δε ≤ 200%) compared to the NR-based composite (GF = 18 at 0% ≤ Δε ≤ 200%). The highest gauge factor of 39,125 (1000% ≤ Δε ≤ 1220) was achieved in NBR-based composites with 1 vol% CNT content. However, 1.5 vol% CNT content in NBR provides better strain sensitivity and linearity than other composites. Additionally, NBR demonstrates superior electromechanical actuation properties, with 1317% higher actuation displacement and 276% higher electromechanical pressure compared to NR at an applied electric field of 12 kV. Due to the stronger chemical bonding between the rubber and CNT, NR-based composites are more suitable for dynamic mechanical applications. In contrast, NBR-based CNT composites are ideal for stretchable electromechanical sensors and actuators, owing to the high dielectric constant and polarizable functional groups in NBR.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3