The Status and Research Progress of Cadmium Pollution in Rice- (Oryza sativa L.) and Wheat- (Triticum aestivum L.) Cropping Systems in China: A Critical Review

Author:

Gao Yue,Duan Zengqiang,Zhang Lingxiao,Sun Da,Li XunORCID

Abstract

The accumulation of cadmium in rice (Oryza sativa L.) and wheat (Triticum aestivum L.) is a serious threat to the safe use of farmland and to the health of the human diet that has attracted extensive attention from researchers. In this review, a bibliometric analysis was performed using a VOS viewer (1.6.18, Netherlands) to investigate the status of cadmium contamination in rice and wheat growing systems, human health risks, mechanisms of Cd uptake and transport, and the corresponding research hotspots. It has a certain reference value for the prevention and control of cadmium pollution in rice and wheat planting systems in China and abroad. The results showed that the Cd content in rice and wheat planting systems in the Yangtze River Basin was significantly higher than that in other areas of China, and the Cd content in rice and wheat grains and the hazard quotient (HQ) in Hunan Province was the highest. The average Cd concentration exceeded the recommended limit by about 62% for rice and 81% for wheat. The main reasons for the high Cd pollution in rice and wheat growing areas in Hunan are mining activities, phosphate fertilizer application, sewage irrigation, and electronic equipment manufacturing. In this review, we demonstrate that cadmium toxicity reduces the uptake and transport of essential elements in rice and wheat. Cadmium stress seriously affected the growth and morphology of plant roots. In the shoots, Cd toxicity was manifested by a series of physiological injuries, such as decreased photosynthesis, soluble protein, sugar, and antioxidant enzyme activity. Cadmium that accumulates in the shoots is transferred to grains and then passes up the food chain to people and animals. Therefore, methods for reducing cadmium content in grains of rice and wheat are urgently needed, especially in Cd-contaminated soil. Current research on Cd pollution in rice and wheat planting systems focuses on the bioavailability of Cd, soil rhizosphere changes in wheat and rice, and the role of antioxidant enzyme systems in alleviating heavy metal stress in rice and wheat.

Funder

Strategic Priority Research Program of the Chinese Academy of Science

The Key-Area Research and Development Program of Zhejiang Province

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3