IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making

Author:

Chang XiaoqingORCID,Tan Yu-Mei,Allen David G.ORCID,Bell ShannonORCID,Brown Paul C.,Browning Lauren,Ceger PatriciaORCID,Gearhart Jeffery,Hakkinen Pertti J.ORCID,Kabadi Shruti V.,Kleinstreuer Nicole C.ORCID,Lumen Annie,Matheson JoannaORCID,Paini AliciaORCID,Pangburn Heather A.,Petersen Elijah J.ORCID,Reinke Emily N.,Ribeiro Alexandre J. S.,Sipes Nisha,Sweeney Lisa M.,Wambaugh John F.,Wange RonaldORCID,Wetmore Barbara A.,Mumtaz Moiz

Abstract

During the past few decades, the science of toxicology has been undergoing a transformation from observational to predictive science. New approach methodologies (NAMs), including in vitro assays, in silico models, read-across, and in vitro to in vivo extrapolation (IVIVE), are being developed to reduce, refine, or replace whole animal testing, encouraging the judicious use of time and resources. Some of these methods have advanced past the exploratory research stage and are beginning to gain acceptance for the risk assessment of chemicals. A review of the recent literature reveals a burst of IVIVE publications over the past decade. In this review, we propose operational definitions for IVIVE, present literature examples for several common toxicity endpoints, and highlight their implications in decision-making processes across various federal agencies, as well as international organizations, including those in the European Union (EU). The current challenges and future needs are also summarized for IVIVE. In addition to refining and reducing the number of animals in traditional toxicity testing protocols and being used for prioritizing chemical testing, the goal to use IVIVE to facilitate the replacement of animal models can be achieved through their continued evolution and development, including a strategic plan to qualify IVIVE methods for regulatory acceptance.

Funder

National Institute of Health

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3