Unambiguous Ex Situ and in Cell 2D 13C Solid-State NMR Characterization of Starch and Its Constituents

Author:

Poulhazan Alexandre,Arnold Alexandre,Warschawski Dror,Marcotte Isabelle

Abstract

Starch is the most abundant energy storage molecule in plants and is an essential part of the human diet. This glucose polymer is composed of amorphous and crystalline domains in different forms (A and B types) with specific physicochemical properties that determine its bioavailability for an organism, as well as its value in the food industry. Using two-dimensional (2D) high resolution solid-state nuclear magnetic resonance (SS-NMR) on 13C-labelled starches that were obtained from Chlamydomonas reinhardtii microalgae, we established a complete and unambiguous assignment for starch and its constituents (amylopectin and amylose) in the two crystalline forms and in the amorphous state. We also assigned so far unreported non-reducing end groups and assessed starch chain length, crystallinity and amylose content. Starch was then characterized in situ, i.e., by 13C solid-state NMR of intact microalgal cells. Our in-cell methodology also enabled the identification of the effect of nitrogen starvation on starch metabolism. This work shows how solid-state NMR can enable the identification of starch structure, chemical modifications and biosynthesis in situ in intact microorganisms, eliminating time consuming and potentially altering purification steps.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3