Past Management Spurs Differential Plant Communities within a Giant Single-Clone Aspen Forest

Author:

Rogers Paul C.,Šebesta Jan

Abstract

Sustainable aspen ecosystems hold great promise for global biodiversity conservation. These forests harbor relatively high species diversity, yet are threatened by fire suppression, land development, timber-focused management, extended droughts, and chronic herbivory. “Pando” is a high-profile quaking aspen (Populus tremuloides) forest in Utah, USA which is putatively the ‘largest living organism on earth.’ Pando comprises an estimated 47,000 genetically identical stems, but is threatened by human impacts. Our interest in the present study is whether changes to the giant organism were affecting understorey vegetation and whether discrete zones are displaying divergent community compositions. For instance, recent research has demonstrated strong herbivory impacts that are affecting portions of Pando differentially. This study consists of 20 randomly distributed vegetation survey plots within three de facto management regimes (hereafter, management group or type) along an herbivory protection gradient: No Fence, 2013 Fence (total protection), and 2014 Fence (imperfect protection). The plant survey was supplemented by previously-established forest and herbivore measurements to test for community assemblage explanatory agents. Sixty-eight species were found across the entire study. Analyses indicated strong links between management group orientation, species assemblages, and tree density/canopy openings. We found distinct evidence that within management group species composition was more similar than across groups for two of the three pairings. However, the other pairing, the most successfully protected area and the completely unprotected area, was not statistically distinct; likely a result a deteriorating overstorey in these two areas, whereas the third management type (2014 Fence) exhibited higher canopy cover. Indicator species analysis found that a small group of plant species had statistical allegiances to specific management groups, suggesting resource preference selection within Pando. Ordination analysis searching for causal factors reached two broad conclusions: (1) aspen regeneration, and therefore long-term resilience, is being negatively affected by chronic animal browsing and (2) current understorey species diversity is highest where forest canopy gaps are abundant. Future research at the massive Pando clone will continue informing linkages between understorey communities and overstorey-driven ecological pathways.

Funder

U.S. Bureau of Land Management

Publisher

MDPI AG

Subject

Forestry

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3