Non-Targeted Metabolome Analysis with Low-Dose Selenate-Treated Arabidopsis

Author:

Li Hongqiao1ORCID,Mori Tetsuya2ORCID,Moriyama Rintaro1,Fujita Moeka1,Hatanaka Genki3,Shiotsuka Naoki1,Hosomi Ryota3ORCID,Maruyama-Nakashita Akiko1ORCID

Affiliation:

1. Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan

2. RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan

3. Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan

Abstract

Selenate, the most common form of selenium (Se) in soil environments, is beneficial for higher plants. Selenate is similar to sulfate in terms of the structure and the manner of assimilation by plants, which involves the reduction of selenate to selenide and the replacement of an S moiety in the organic compounds such as amino acids. The nonspecific incorporation of seleno-amino acids into proteins induce Se toxicity in plants. Selenate alters the plant metabolism, particularly the S metabolism, which is comparable to the responses to S deficiency (−S). However, previous analyses involved high concentrations of selenate, and the effects of lower selenate doses have not been elucidated. In this study, we analyzed the metabolic changes induced by selenate treatment through a non-targeted metabolome analysis and found that 2 µM of selenate decreased the S assimilates and amino acids, and increased the flavonoids, while the glutathione levels were maintained. The results suggest that the decrease in amino acid levels, which is not detected under −S, along with the disruptions in S assimilation, amino acid biosynthesis pathways, and the energy metabolism, present the primary metabolic influences of selenate. These results suggest that selenate targets the energy metabolism and S assimilation first, and induces oxidative stress mitigation, represented by flavonoid accumulation, as a key adaptive response, providing a novel, possible mechanism in plant stress adaptation.

Funder

Qdai-jump Research Program, JSPS KAKENHI

Environmental Research Projects from the Sumitomo Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3