Developing a Fast-Processing Novel Algorithm for Contact Analysis of Standard Spur Gears

Author:

Cazan Stelian1,Bhaumik Shubrajit2,Paleu Viorel1ORCID,Crețu Spiridon1

Affiliation:

1. Mechanical Engineering, Mechatronics and Robotics Department, Faculty of Mechanical Engineering, Gheorghe Asachi Technical University of Iași, 61-63 D. Mangeron Blvd., 700050 Iasi, Romania

2. Tribology and Interactive Surfaces Research Laboratory (TRISUL), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Chennai 601103, India

Abstract

Numerical methods have gained momentum among specific engineering problems that must be solved in such a manner that accuracy and speed are the two most important aspects to consider regarding the output. This paper presents a fast, semi-analytical method (SAM) and original mathematical algorithms to determine the pressure distribution and von Mises stress for spur gears’ meshing teeth. The SAM begins with the Hartnett approach, based on Boussinesq’s equation for the half-space theory of linear elasticity, which implicitly means an infinite width of the gear flank. To simulate more realistic quarter-space conditions, corrections based on virtual mirror pressure are introduced in the computational algorithm. Mathematical surfaces modeling is an important aspect for spur gears as an intermediate stage to determine the pressure distribution and von Mises stress. Shaft misalignment changes the contact problem from symmetric, in which the half- or quarter-space model can be used, to asymmetric. In the latter case, the model must determine the entire contact area. The obtained output is validated by comparisons between our original FEA results and results from the literature using SAMs and FEA.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3