Fractional Adaptive Resonance Theory (FRA-ART): An Extension for a Stream Clustering Method with Enhanced Data Representation

Author:

Zhu Yingwen1ORCID,Li Ping2ORCID,Zhang Qian1ORCID,Zhu Yi1,Yang Jun3

Affiliation:

1. School of Information Technology, Jiangsu Open University, Nanjing 210036, China

2. College of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

3. College of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China

Abstract

Clustering data streams has become a hot topic and has been extensively applied to many real-world applications. Compared with traditional clustering, data stream clustering is more challenging. Adaptive Resonance Theory (ART) is a powerful (online) clustering method, it can automatically adjust to learn both abstract and concrete information, and can respond to arbitrarily large non-stationary databases while having fewer parameters, low computational complexity, and less sensitivity to noise, but its limited feature representation hinders its application to complex data streams. In this paper, considering its advantages and disadvantages, we present its flexible extension for stream clustering, called fractional adaptive resonance theory (FRA-ART). FRA-ART enhances data representation by fractionally exponentiating input features using self-interactive basis functions (SIBFs) and incorporating feature interaction through cross-interactive basis functions (CIBFs) at the cost only of introducing an additionally adjustable fractional order. Both SIBFs and CIBFs can be precomputed using existing algorithms, making FRA-ART easily adaptable to any ART variant. Finally, comparative experiments on five data stream datasets, including artificial and real-world datasets, demonstrate FRA-ART’s superior robustness and comparable or improved performance in terms of accuracy, normalized mutual information, rand index, and cluster stability compared to ART and the state-of-the-art G-Stream algorithm.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3