Affiliation:
1. Department of Architectural Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China
2. School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
Abstract
Based on the first-order shear deformation theory (FSDT) and Kelvin–Voigt viscoelastic model, one derives a wave equation of longitudinal guide waves in viscoelastic orthotropic cylindrical shells, which analytically solves the wave equation and explains the intrinsic meaning of the wave propagation. In the numerical examples, the velocity curves of the first few modes for the elastic cylindrical shell are first calculated, and the results of the available literature are compared to verify the derivation and programming. Furthermore, the phase velocity curves and attenuation coefficient curves of the guide waves for a functionally graded (FG) shell are calculated, and the effects of viscoelastic parameters, material gradient patterns, material volume fractions, and size ratios on the phase velocity curves and attenuation curves are studied. This study can be widely used to analytically model the wave propagating in inhomogeneous viscoelastic composite structures and present a theoretical basis for the excellent service performance of composite structures and ultrasonic devices.
Funder
Natural Science Foundation of China
Central Guidance on Local Science and Technology Development Fund of Hebei Province
Hebei Provincial Natural Science Foundation of China
Hebei Provincial Higher Education Science and Technology Research Project—Top Young Talents Project
Hebei Provincial Introduced Oversea Scholars Foundation of China
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献