Atomic Force Microscopy and Raman Microspectroscopy Investigations of the Leaching of Chalcopyrite (112) Surface

Author:

Qian GujieORCID,Gibson Christopher T.ORCID,Harmer-Bassell SarahORCID,Pring AllanORCID

Abstract

The aim of this study was to determine the reactivity of the chalcopyrite (112) surface under industrially relevant leaching conditions. Leaching of the chalcopyrite (112) surface was carried out at approximately pH 1 and in the presence of 0.01 M ferric or ferrous. The atomic force microscopy (AFM) and Raman microspectroscopy analyses suggested that the chalcopyrite (112) surface was relatively inert, with no formation of elemental sulfur observed over 42 days of leaching. In addition, it was found that the distribution of Fe-S and Cu-S bonds was always negatively correlated, as revealed by Raman analysis. This suggested that the breakage of the Fe-S and Cu-S bonds did not occur concurrently at a specific reaction site. The rate of variation of surface roughness, as reflected by AFM data, also suggested that leaching of the chalcopyrite (112) surface in the ferric or ferrous solution medium likely occurred more rapidly in the initial stage (fewer than seven days) than in the later stage (after seven days).

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3