The Hydrologic Role of Urban Green Space in Mitigating Flooding (Luohe, China)

Author:

Bai Tian,Mayer Audrey,Shuster William,Tian Guohang

Abstract

Even if urban catchments are adequately drained by sewer infrastructures, flooding hotspots develop where ongoing development and poor coordination among utilities conspire with land use and land cover, drainage, and rainfall. We combined spatially explicit land use/land cover data from Luohe City (central China) with soil hydrology (as measured, green space hydraulic conductivity), topography, and observed chronic flooding to analyze the relationships between spatial patterns in pervious surface and flooding. When compared to spatial–structural metrics of land use/cover where flooding was commonly observed, we found that some areas expected to remain dry (given soil and elevation characteristics) still experienced localized flooding, indicating hotspots with overwhelmed sewer infrastructure and a lack of pervious surfaces to effectively infiltrate and drain rainfall. Next, we used curve numbers to represent the composite hydrology of different land use/covers within both chronic flooding and dry (non-flooding) circles of 750 m diameter, and local design storms to determine the anticipated average proportion of runoff. We found that dry circles were more permeable (curve number (mean ± std. error) = 74 ± 2, n = 25) than wetter, flooded circles (curve number = 87 ± 1). Given design storm forcing (20, 50, 100 years’ recurrence interval, and maximum anticipated storm depths), dry points would produce runoff of 26 to 35 percent rainfall, and wet points of 52 to 61 percent of applied rainfall. However, we estimate by simulation that runoff reduction benefits would decline once infiltration-excess (Hortonian) runoff mechanisms activate for storms with precipitation rates in excess of an average of 21 mm/h, contingent on antecedent moisture conditions. Our spatial metrics indicate that larger amounts and patches of dispersed green space mitigate flooding risk, while aggregating buildings (roofs) and green space into larger, separate areas exacerbates risk.

Funder

National Natural Science Foundation of China

Henan Agricultural University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3