Adsorption of Glyphosate in Water Using Iron-Based Water Treatment Residuals Derived from Drinking Water Treatment Plants

Author:

Qiu Fuguo1,Li Chaoran1,Wang Shunxi1,Li Shuang1

Affiliation:

1. Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

Abstract

Glyphosate, a broad-spectrum herbicide, poses a potential threat to human health and the ecosystem due to its toxicity. In this study, iron-based water treatment residuals (Fe-WTRs) were employed for glyphosate removal. The adsorption kinetics, isotherms, and thermodynamics, as well as the effects of pH, Fe-WTR particle size, and temperature, were explored. The results show that Fe-WTRs are an effective adsorbent for glyphosate adsorption, and the maximum uptake capacity was recorded as 30.25 mg/g. The Fe-WTR surface was positively charged, and low-valent iron dominated under acidic conditions, favoring glyphosate adsorption. Furthermore, smaller Fe-WTR particles (<0.125 mm) showed a faster absorption rate and 20% higher adsorption capacity than larger particles (2–5 mm). The kinetic analysis indicated that the adsorption process exhibits a two-step profile, conforming to the pseudo-second-order model, and the thermodynamic analysis indicated that it is a spontaneous, endothermic, and entropy-driven reaction. Finally, the Fourier transform infrared spectral analysis revealed that this process is mainly associated with the formation of metal phosphate through the ligand exchange of the phosphate groups of glyphosates with the hydroxyl groups of iron present in Fe-WTRs. In this study, we demonstrated the potential of Fe-WTRs as a cost-effective and efficient adsorbent for glyphosate removal.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3