CVD Conditions for MWCNTs Production and Their Effects on the Optical and Electrical Properties of PPy/MWCNTs, PANI/MWCNTs Nanocomposites by In Situ Electropolymerization

Author:

Brachetti-Sibaja Silvia Beatriz,Palma-Ramírez DianaORCID,Torres-Huerta Aidé MinervaORCID,Domínguez-Crespo Miguel Antonio,Dorantes-Rosales Héctor Javier,Rodríguez-Salazar Adela EugeniaORCID,Ramírez-Meneses Esther

Abstract

In this work, the optimal conditions of synthesizing and purifying carbon nanotubes (CNTs) from ferrocene were selected at the first stage, where decomposition time, argon fluxes, precursor amounts, decomposition temperature (at 1023 K and 1123 K), and purification process (HNO3 + H2SO4 or HCl + H2O2), were modulated through chemical vapor deposition (CVD) and compared to commercial CNTs. The processing temperature at 1123 K and the treatment with HCl + H2O2 were key parameters influencing the purity, crystallinity, stability, and optical/electrical properties of bamboo-like morphology CNTs. Selected multiwalled CNTs (MWCNTs), from 1 to 20 wt%, were electropolymerized through in-situ polarization with conductive polymers (CPs), poly(aniline) (PANI) and poly(pyrrole) (PPy), for obtaining composites. In terms of structural stability and electrical properties, MWCNTs obtained by CVD were found to be better than commercial ones for producing CPs composites. The CNTs addition in both polymeric matrixes was of 6.5 wt%. In both systems, crystallinity degree, related to the alignment of PC chains on MWCNTs surface, was improved. Electrical conductivity, in terms of the carrier density and mobility, was adequately enhanced with CVD CNTs, which were even better than the evaluated commercial CNTs. The findings of this study demonstrate that synergistic effects among the hydrogen bonds, stability, and conductivity are better in PANI/MWCNTs than in PPy/MWCNTs composites, which open a promissory route to prepare materials for different technological applications.

Funder

Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3