Microcapsule Triggering Mechanics in Cementitious Materials: A Modelling and Machine Learning Approach

Author:

Ricketts Evan John1ORCID,de Souza Lívia Ribeiro2,Freeman Brubeck Lee13ORCID,Jefferson Anthony1,Al-Tabbaa Abir2

Affiliation:

1. School of Engineering, Cardiff University, 3-5 The Walk, Cardiff CF24 3AA, UK

2. Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK

3. LUSAS, Forge House, 66 High Street, Kingston upon Thames KT1 1HN, UK

Abstract

Self-healing cementitious materials containing microcapsules filled with healing agents can autonomously seal cracks and restore structural integrity. However, optimising the microcapsule mechanical properties to survive concrete mixing whilst still rupturing at the cracked interface to release the healing agent remains challenging. This study develops an integrated numerical modelling and machine learning approach for tailoring acrylate-based microcapsules for triggering within cementitious matrices. Microfluidics is first utilised to produce microcapsules with systematically varied shell thickness, strength, and cement compatibility. The capsules are characterised and simulated using a continuum damage mechanics model that is able to simulate cracking. A parametric study investigates the key microcapsule and interfacial properties governing shell rupture versus matrix failure. The simulation results are used to train an artificial neural network to rapidly predict the triggering behaviour based on capsule properties. The machine learning model produces design curves relating the microcapsule strength, toughness, and interfacial bond to its propensity for fracture. By combining advanced simulations and data science, the framework connects tailored microcapsule properties to their intended performance in complex cementitious environments for more robust self-healing concrete systems.

Funder

EPSCR

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3