Kinetics, Isotherm and Thermodynamic Studies for Efficient Adsorption of Congo Red Dye from Aqueous Solution onto Novel Cyanoguanidine-Modified Chitosan Adsorbent

Author:

Al-Harby Nouf F.,Albahly Ebtehal F.,Mohamed Nadia A.

Abstract

Novel Cyanoguanidine-modified chitosan (CCs) adsorbent was successfully prepared via a four-step procedure; first by protection of the amino groups of chitosan, second by insertion of epoxide rings, third by opening the latter with cyanoguanidine, and fourth by restoring the amino groups through elimination of the protection. Its structure and morphology were checked using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The adsorption capacity of CCs for Congo Red (CR) dye was studied under various conditions. It decreased significantly with the increase in the solution pH value and dye concentration, while it increased with increasing temperature. The adsorption fitted to the pseudo-second order kinetic model and Elovich model. The intraparticle diffusion model showed that the adsorption involved a multi-step process. The isotherm of CR dye adsorption by CCs conforms to the Langmuir isotherm model, indicating the monolayer nature of adsorption. The maximum monolayer coverage capacity, qmax, was 666.67 mg g−1. Studying the thermodynamic showed that the adsorption was endothermic as illustrated from the positive value of enthalpy (34.49 kJ mol−1). According to the values of ΔG°, the adsorption process was spontaneous at all selected temperatures. The value of ΔS° showed an increase in randomness for the adsorption process. The value of activation energy was 2.47 kJ mol−1. The desorption percentage reached to 58% after 5 cycles. This proved that CCs is an efficient and a promising adsorbent for the removal of CR dye from its aqueous solution.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3