Unlocking Phytate with Phytase: A Meta-Analytic View of Meat-Type Chicken Muscle Growth and Bone Mineralization Potential

Author:

Nuamah Emmanuel1ORCID,Okon Utibe Mfon2ORCID,Jeong Eungyeong1ORCID,Mun Yejin1ORCID,Cheon Inhyeok1ORCID,Chae Byungho1ORCID,Odoi Frederick Nii Ako3,Kim Dong-wook4,Choi Nag-Jin1ORCID

Affiliation:

1. Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea

2. Department of Animal Science, Faculty of Agriculture, Akwa Ibom State University, Mkpat Enin 532111, Nigeria

3. Department of Animal Science, School of Agriculture, University of Cape Coast, Cape Coast CC 3321, Ghana

4. Department of Animal Science, Korea National University of Agriculture and Fisheries, Jeonju 54874, Republic of Korea

Abstract

The inclusion of exogenous phytase in P- and Ca-deficient diets of broilers to address the growing concern about excessive P excretion into the environment over the years has been remarkably documented. However, responses among these studies have been inconsistent because of the several factors affecting P utilization. For this reason, a systematic review with a meta-analysis of results from forty-one studies published from 2000 to February 2024 was evaluated to achieve the following: (1) quantitatively summarize the size of phytase effect on growth performance, bone strength and mineralization in broilers fed diets deficient in P and Ca and (2) estimate and explore the heterogeneity in the effect size of outcomes using subgroup and meta-regression analyses. The quality of the included studies was assessed using the Cochrane Collaboration’s SYRCLE risk of bias checklists for animal studies. Applying the random effects models, Hedges’ g effect size of supplemented phytase was calculated using the R software (version 4.3.3, Angel Food Cake) to determine the standardized mean difference (SMD) at a 95% confidence interval. Subgroup analysis and meta-regression were used to further explore the effect size heterogeneity (PSMD ≤ 0.05, I2 > 50%, n ≥ 10). The meta-analysis showed that supplemental phytase increases ADFI and BWG and improves FCR at each time point of growth (p < 0.0001). Additionally, phytase supplementation consistently increased tibia ash, P and Ca, and bone strength (p < 0.0001) of broilers fed P- and Ca-deficient diets. The results of the subgroup and meta-regression analyses showed that the age and strain of broiler, dietary P source, and the duration of phytase exposure significantly influence the effect size of phytase on growth and bone parameters. In conclusion, phytase can attenuate the effect of reducing dietary-available phosphorus and calcium and improve ADFI, BWG, and FCR, especially when added to starter diets. It further enhances bone ash, bone mineralization, and the bone-breaking strength of broilers, even though the effects of bone ash and strength can be maximized in the starter phase of growth. However, the effect sizes of phytase were related to the age and strain of the broiler, dietary P source, and the duration of phytase exposure rather than the dosage.

Funder

Rural Development Administration, Republic of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3