Using Machine Learning to Predict Retrofit Effects for a Commercial Building Portfolio

Author:

Xu Yujie,Loftness Vivian,Severnini EdsonORCID

Abstract

Buildings account for 40% of the energy consumption and 31% of the CO2 emissions in the United States. Energy retrofits of existing buildings provide an effective means to reduce building consumption and carbon footprints. A key step in retrofit planning is to predict the effect of various potential retrofits on energy consumption. Decision-makers currently look to simulation-based tools for detailed assessments of a large range of retrofit options. However, simulations often require detailed building characteristic inputs, high expertise, and extensive computational power, presenting challenges for considering portfolios of buildings or evaluating large-scale policy proposals. Data-driven methods offer an alternative approach to retrofit analysis that could be more easily applied to portfolio-wide retrofit plans. However, current applications focus heavily on evaluating past retrofits, providing little decision support for future retrofits. This paper uses data from a portfolio of 550 federal buildings and demonstrates a data-driven approach to generalizing the heterogeneous treatment effect of past retrofits to predict future savings potential for assisting retrofit planning. The main findings include the following: (1) There is high variation in the predicted savings across retrofitted buildings, (2) GSALink, a dashboard tool and fault detection system, commissioning, and HVAC investments had the highest average savings among the six actions analyzed; and (3) by targeting high savers, there is a 110–300 billion Btu improvement potential for the portfolio in site energy savings (the equivalent of 12–32% of the portfolio-total site energy consumption).

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3