HSICCR: A Lightweight Scoring Criterion Based on Measuring the Degree of Causality for the Detection of SNP Interactions

Author:

Zheng JunxiORCID,Zeng Juan,Wang Xinyang,Li Gang,Zhu Jiaxian,Wang Fanghong,Tang Deyu

Abstract

Recently, research on detecting SNP interactions has attracted considerable attention, which is of great significance for exploring complex diseases. The formulation of effective swarm intelligence optimization algorithms is a primary resolution to this issue. To achieve this goal, an important problem needs to be solved in advance; that is, designing and selecting lightweight scoring criteria that can be calculated in O(m) time and can accurately estimate the degree of association between SNP combinations and disease status. In this study, we propose a high-accuracy scoring criterion (HSICCR) by measuring the degree of causality dedicated to assessing the degree. First, we approximate two kinds of dependencies according to the structural equation of the causal relationship between epistasis SNP combination and disease status. Then, inspired by these dependencies, we put forward this scoring criterion that integrates a widely used method of measuring statistical dependencies based on kernel functions (HSIC). However, the computing time complexity of HSIC is O(m2), which is too costly to be an integral part of the scoring criterion. Since the sizes of the sample space of the disease status, SNP loci and SNP combination are small enough, we propose an efficient method of computing HSIC for variables with a small sample in O(m) time. Eventually, HSICCR can be computed in O(m) time in practice. Finally, we compared HSICCR with five representative high-accuracy scoring criteria that detect SNP interactions for 49 simulation disease models. The experimental results show that the accuracy of our proposed scoring criterion is, overall, state-of-the-art.

Funder

Guangdong provincial medical research foundation of China

national natural science foundation of China

natural science foundation of Guangdong province, China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3