Information System Model and Key Technologies of High-Definition Maps in Autonomous Driving Scenarios

Author:

Qian Zhiqi1,Ye Zhirui1,Shi Xiaomeng1

Affiliation:

1. School of Transportation, Southeast University, 35 Jinxianghe Road, Nanjing 210018, China

Abstract

Background: High-definition maps can provide necessary prior data for autonomous driving, as well as the corresponding beyond-line-of-sight perception, verification and positioning, dynamic planning, and decision control. It is a necessary element to achieve L4/L5 unmanned driving at the current stage. However, currently, high-definition maps still have problems such as a large amount of data, a lot of data redundancy, and weak data correlation, which make autonomous driving fall into difficulties such as high data query difficulty and low timeliness. In order to optimize the data quality of high-definition maps, enhance the degree of data correlation, and ensure that they better assist vehicles in safe driving and efficient passage in the autonomous driving scenario, it is necessary to clarify the information system thinking of high-definition maps, propose a complete and accurate model, determine the content and functions of each level of the model, and continuously improve the information system model. Objective: The study aimed to put forward a complete and accurate high-definition map information system model and elaborate in detail the content and functions of each component in the data logic structure of the system model. Methods: Through research methods such as the modeling method and literature research method, we studied the high-definition map information system model in the autonomous driving scenario and explored the key technologies therein. Results: We put forward a four-layer integrated high-definition map information system model, elaborated in detail the content and functions of each component (map, road, vehicle, and user) in the data logic structure of the model, and also elaborated on the mechanism of the combined information of each level of the model to provide services in perception, positioning, decision making, and control for autonomous driving vehicles. This article also discussed two key technologies that can support autonomous driving vehicles to complete path planning, navigation decision making, and vehicle control in different autonomous driving scenarios. Conclusions: The four-layer integrated high-definition map information model proposed by this research institute has certain application feasibility and can provide references for the standardized production of high-definition maps, the unification of information interaction relationships, and the standardization of map data associations.

Publisher

MDPI AG

Reference39 articles.

1. Methodology of Spatial Data Acquisition and Development of High-Definition Map for Autonomous Vehicles—Case Study from Wrocław, Poland;Siejek;Civ. Environ. Eng. Rep.,2024

2. Blockchain and Autonomous Vehicles: Recent Advances and Future Directions;Jain;IEEE Access,2021

3. Object Detection of Road Facilities Using YOLOv3 for High-definition Map Updates;Young;Sens. Mater.,2022

4. Vision-HD: Road change detection and registration using images and high-definition maps;Hui;Int. J. Geogr. Inf. Sci.,2024

5. A shared steering controller design based on steer-by-wire system considering human-machine goal consistency;Ma;J. Frankl. Inst.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3