Formation of Aggregate-Free Gold Nanoparticles in the Cyclodextrin-Tetrachloroaurate System Follows Finke–Watzky Kinetics

Author:

Pestovsky Yuri,Srichana TeerapolORCID

Abstract

Cyclodextrin-capped gold nanoparticles are promising drug-delivery vehicles, but the technique of their preparation without trace amounts of aggregates is still lacking, and the size-manipulation possibility is very limited. In the present study, gold nanoparticles were synthesized by means of 0.1% (w/w) tetrachloroauric acid reduction with cyclodextrins at room temperature, at cyclodextrin concentrations of 0.001 M, 0.002 M and 0.004 M, and pH values of 11, 11.5 and 12. The synthesized nanoparticles were characterized by dynamic light scattering in both back-scattering and forward-scattering modes, spectrophotometry, X-ray photoelectron spectroscopy, transmission electron microscopy and Fourier-transform infrared spectroscopy. These techniques revealed 14.9% Au1+ on their surfaces. The Finke–Watzky kinetics of the reaction was demonstrated, but the actual growth mechanism turned out to be multistage. The synthesis kinetics and the resulting particle-size distribution were pH-dependent. The reaction and centrifugation conditions for the recovery of aggregate-free nanoparticles with different size distributions were determined. The absorbances of the best preparations were 7.6 for α-cyclodextrin, 8.9 for β-cyclodextrin and 7.5 for γ-cyclodextrin. Particle-size distribution by intensity was indicative of the complete absence of aggregates. The resulting preparations were ready to use without the need for concentration, filtration, or further purification. The synthesis meets the requirements of green chemistry.

Funder

Prince of Songka University and the Ministry of Higher Education, Science, Research and Innovation, Thailand

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3