Sintering Quality Prediction Model Based on Semi-Supervised Dynamic Time Feature Extraction Framework

Author:

Li YuxuanORCID,Yang Chunjie,Sun Youxian

Abstract

In the sintering process, it is difficult to obtain the key quality variables in real time, so there is lack of real-time information to guide the production process. Furthermore, these labeled data are too few, resulting in poor performance of conventional soft sensor models. Therefore, a novel semi-supervised dynamic feature extraction framework (SS-DTFEE) based on sequence pre-training and fine-tuning is proposed in this paper. Firstly, based on the DTFEE model, the time features of the sequences are extended and extracted. Secondly, a novel weighted bidirectional LSTM unit (BiLSTM) is designed to extract the latent variables of original sequence data. Based on improved BiLSTM, an encoder-decoder model is designed as a pre-training model with unsupervised learning to obtain the hidden information in the process. Next, through model migration and fine-tuning strategy, the prediction performance of labeled datasets is improved. The proposed method is applied in the actual sintering process to estimate the FeO content, which shows a significant improvement of the prediction accuracy, compared to traditional methods.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3