Characterization of Biodegraded Ignitable Liquids by Headspace–Ion Mobility Spectrometry

Author:

P. Calle José Luis1ORCID,Ferreiro-González Marta1ORCID,Aliaño-González María José1ORCID,F. Barbero Gerardo1ORCID,Palma Miguel1ORCID

Affiliation:

1. Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, 11510 Puerto Real, Spain

Abstract

The detection of ignitable liquids (ILs) can be crucial when it comes to determining arson cases. Such identification of ILs is a challenging task that may be affected by a number of factors. Microbial degradation is considered one of three major processes that can alter the composition of IL residues. Since biodegradation is a time related phenomenon, it should be studied at different stages of development. This article presents a method based on ion mobility spectroscopy (IMS) which has been used as an electronic nose. In particular, ion mobility sum spectrum (IMSS) in combination with chemometric techniques (hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA)) has been applied for the characterization of different biodegraded ILs. This method intends to use IMSS to identify a range of ILs regardless of their degree of biodegradation. Three ILs (diesel, gasoline and kerosene) from three different commercial brands were evaluated after remaining in a soil substrate for several lengths of time (0, 2, 5, 13 and 38 days). The HCA results showed the samples’ trend to fall into categories characterized by ILs type and biodegradation time. The LDAs allowed a 99% successful classification of the samples according to the IL type. This is the first time that an HS-IMS technique has been used to detect ILs that have undergone biodegradation processes. The results show that IMS may be a promising alternative to the current standard method based on gas-chromatography for the analysis of biodegraded ILs. Furthermore, no pretreatment of the samples nor the use of a solvent is required.

Funder

European Regional Development Fund

Universidad de Cádiz

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3