MLS-Net: An Automatic Sleep Stage Classifier Utilizing Multimodal Physiological Signals in Mice

Author:

Jiang Chengyong1ORCID,Xie Wenbin1,Zheng Jiadong1,Yan Biao1ORCID,Luo Junwen1,Zhang Jiayi1ORCID

Affiliation:

1. State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai 200032, China

Abstract

Over the past decades, feature-based statistical machine learning and deep neural networks have been extensively utilized for automatic sleep stage classification (ASSC). Feature-based approaches offer clear insights into sleep characteristics and require low computational power but often fail to capture the spatial–temporal context of the data. In contrast, deep neural networks can process raw sleep signals directly and deliver superior performance. However, their overfitting, inconsistent accuracy, and computational cost were the primary drawbacks that limited their end-user acceptance. To address these challenges, we developed a novel neural network model, MLS-Net, which integrates the strengths of neural networks and feature extraction for automated sleep staging in mice. MLS-Net leverages temporal and spectral features from multimodal signals, such as EEG, EMG, and eye movements (EMs), as inputs and incorporates a bidirectional Long Short-Term Memory (bi-LSTM) to effectively capture the spatial–temporal nonlinear characteristics inherent in sleep signals. Our studies demonstrate that MLS-Net achieves an overall classification accuracy of 90.4% and REM state precision of 91.1%, sensitivity of 84.7%, and an F1-Score of 87.5% in mice, outperforming other neural network and feature-based algorithms in our multimodal dataset.

Funder

NSF of China

MOST

Key Research and Development Program of Ningxia

Publisher

MDPI AG

Reference73 articles.

1. Brain neural patterns and the memory function of sleep;Girardeau;Science,2021

2. Feature selection for sleep/wake stages classification using data driven methods;Zoubek;Biomed. Signal Process. Control,2007

3. Cardiorespiratory-based sleep staging in subjects with obstructive sleep apnea;Redmond;IEEE Trans. Biomed. Eng.,2006

4. The neurobiology, investigation, and treatment of chronic insomnia;Riemann;Lancet Neurol.,2015

5. Animal models of sleep disorders;Toth;Comp. Med.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3