Design and Study of Machine Tools for the Fly-Cutting of Ceramic-Copper Substrates

Author:

Zhang Chupeng1,Sun Jiazheng1,Zhou Jia1,Chen Xiao1

Affiliation:

1. School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China

Abstract

Ceramic-copper substrates, as high-power, load-bearing components, are widely used in new energy vehicles, electric locomotives, high-energy lasers, integrated circuits, and other fields. The service length will depend on the substrate’s copper-coated surface quality, which frequently achieved by utilising an abrasive strip polishing procedure on the substrate’s copper-coated surface. Precision diamond fly-cutting processing machine tools were made because of the low processing accuracy and inability to match the production line’s efficiency. An analysis of the fly-cutting machining principle and the structural makeup of the ceramic-copper substrate is the first step in creating a roughness prediction model based on a tool tip trajectory. This model demonstrates that a shift in the tool tip trajectory due to spindle runout error directly impacts the machined surface’s roughness. The device’s structural optimisation design is derived from the above analyses and implemented using finite element software. Modal and harmonic response analysis validated the machine’s gantry symmetrical structural layout, a parametric variable optimisation design optimised the machine tool’s overall dimensions, and simulation validated the fly-cutterring’s constituent parts. Enhancing the machine tool’s stability and motion accuracy requires using the LK-G5000 laser sensor to measure the guideway’s straightness. The result verified the machine tool’s design index, with the Z- and Y-axes’ straightness being better than 2.42 μm/800 mm and 2.32 μm/200 mm, respectively. Ultimately, the device’s machining accuracy was confirmed. Experiments with flying-cut machining on a 190 × 140 mm ceramic-copper substrate yielded a roughness of Sa9.058 nm. According to the experimental results, the developed machine tool can fulfil the design specifications.

Funder

Hubei Provincial Key Research and Development Programme Project Tasks

2023 Open Fund for Hubei Provincial Key Laboratory of Modern Manufacturing Quality Engineering

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3