Analyzing Relationships of Conductivity and Alkalinity Using Historical Datasets from Streams in Northern Alberta, Canada

Author:

Arciszewski Tim J.ORCID,Roberts David R.ORCID

Abstract

Many measurements, tools, and approaches are used to identify and track the influence of human activities on the physicochemical status of streams. Commonly, chemical concentrations are utilized, but in some areas, such as downstream of coal mines, capacity indices such as specific conductivity have also been used to estimate exposure and risk. However, straightforward tools such as conductivity may not identify human influences in areas with saline groundwater inputs, diffuse exposure pathways, and few discharges of industrial wastewater. Researchers have further suggested in conductivity relative to alkalinity may also reveal human influences, but little has been done to evaluate the utility and necessity of this approach. Using data from 16 example sites in the Peace, Athabasca, and Slave Rivers in northern Alberta (but focusing on tributaries in Canada’s oil sands region) available from multiple regional, provincial, and national monitoring programs, we calculated residual conductivity and determined if it could identify the potential influence of human activity on streams in northern Alberta. To account for unequal sampling intervals within the compiled datasets, but also to include multiple covariates, we calculated residual conductivity using the Generalized Estimating Equation (GEE). The Pearson residuals of the GEEs were then plotted over time along with three smoothers (two locally weighted regressions and one General Additive Model) and a linear model to estimate temporal patterns remaining relative to known changes in human activity in the region or adjacent to the study locations. Although there are some inconsistencies in the results and large gaps in the data at some sites, many increases in residual conductivity correspond with known events in northern Alberta, including the potential influence of site preparation at oil sands mines, reductions in particulate emissions, mining, spills, petroleum coke combustion at one oil sands plant, and hydroelectric development in the Peace basin. Some differences in raw conductivity measurements over time were also indicated. Overall, these analyses suggest residual conductivity may identify broad influences of human activity and be a suitable tool for augmenting broad surveillance monitoring of water bodies alongside current approaches. However, some anomalous increases without apparent explanations were also observed suggesting changes in residual conductivity may also be well-suited for prompting additional and more detailed studies or analyses of existing data.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3