Interrelationship of Electric Double Layer Theory and Microfluidic Microbial Fuel Cells: A Review of Theoretical Foundations and Implications for Performance

Author:

Amadu Mumuni1ORCID,Miadonye Adango1

Affiliation:

1. School of Science and Technology, Cape Breton University, Sydney, NS B1M 1A2, Canada

Abstract

Microbial fuel cells and their related microfluidic systems have emerged as promising greener energy alternatives for the exploitation of avenues related to combined power and wastewater treatment operations. Moreover, the potential for their application in biosensing technology is large. However, while the fundamental principles of science that govern the design and operation of microbial fuel cells (MFCs) and microfluidic microbial fuel cells (MMFCs) are similar to those found in colloid science, the literature shows that current research lacks sufficient reference to the electrostatic and electrokinetic aspects, focusing mostly on aspects related to the architecture, design, anodes, microbial growth and metabolism, and electron transfer mechanisms. In this regard, research is yet to consider MFCs and MMFCs in the context of electrostatic and electrokinetic aspects. In this extensive review, we show, for the first time, the interrelationship of MFCs and MMFCs with electric double layer theory. Consequently, we show how the analytical solution to the mean field Poisson–Boltzmann theory relates to these systems. Moreover, we show the interrelationship between MFC and MMFCs’ performance and the electric double layer and the associated electrostatic and electrokinetic phenomena. This extensive review will likely motivate research in this direction.

Publisher

MDPI AG

Reference194 articles.

1. Hess, K. (1991). Miniaturization Technologies, Office of Technology Assessment.

2. Microfluidic microbial fuel cells: From membrane to membrane free membrane to membrane free;Yang;J. Power Sources,2016

3. Microfluid;Ren;Nanofluid,2012

4. Performance of a microfluidic microbial fuel cell based on graphite electrodes;Ye;Int. J. Hydrogen Energy,2013

5. A High-Performance Membraneless Microfluidic Microbial Fuel Cell for Stable, Long-Term Benchtop Operation under Strong Flow;Amirdehi;ChemElectroChem,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3