Abstract
We propose a sensor design for measurement of large strains where direct application of a fiber optic strain gauge is impossible due to the stiffness mismatch between the optical fiber and the structure under test. The sensor design is based on a rhombus type compliant mechanism, which functions to attenuate input strain and transfer it to the ends of the sensing beam with the mounted optical strain gauge. We developed an analytical model of the sensor, which allows us to relate actuation forces, input displacement/strain, and output strain. The analytical model was verified with the finite element analysis and validated against an experimental prototype. The prototype sensor was able to handle input strains exceeding ±2.5 × 105 µε. Potential application areas of the proposed sensor include compliant elastomeric structures, wearables, and soft robotics.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献