Mechanotransduction in the Cardiovascular System: From Developmental Origins to Homeostasis and Pathology

Author:

Garoffolo Gloria,Pesce MaurizioORCID

Abstract

With the term ‘mechanotransduction’, it is intended the ability of cells to sense and respond to mechanical forces by activating intracellular signal transduction pathways and the relative phenotypic adaptation. While a known role of mechanical stimuli has been acknowledged for developmental biology processes and morphogenesis in various organs, the response of cells to mechanical cues is now also emerging as a major pathophysiology determinant. Cells of the cardiovascular system are typically exposed to a variety of mechanical stimuli ranging from compression to strain and flow (shear) stress. In addition, these cells can also translate subtle changes in biophysical characteristics of the surrounding matrix, such as the stiffness, into intracellular activation cascades with consequent evolution toward pro-inflammatory/pro-fibrotic phenotypes. Since cellular mechanotransduction has a potential readout on long-lasting modifications of the chromatin, exposure of the cells to mechanically altered environments may have similar persisting consequences to those of metabolic dysfunctions or chronic inflammation. In the present review, we highlight the roles of mechanical forces on the control of cardiovascular formation during embryogenesis, and in the development and pathogenesis of the cardiovascular system.

Funder

Ministero della Salute

Publisher

MDPI AG

Subject

General Medicine

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3