Role of Ceramidases in Sphingolipid Metabolism and Human Diseases

Author:

Parveen Farzana,Bender Daniel,Law Shi-Hui,Mishra Vineet Kumar,Chen Chih-ChiehORCID,Ke Liang-YinORCID

Abstract

Human pathologies such as Alzheimer’s disease, type 2 diabetes-induced insulin resistance, cancer, and cardiovascular diseases have altered lipid homeostasis. Among these imbalanced lipids, the bioactive sphingolipids ceramide and sphingosine-1 phosphate (S1P) are pivotal in the pathophysiology of these diseases. Several enzymes within the sphingolipid pathway contribute to the homeostasis of ceramide and S1P. Ceramidase is key in the degradation of ceramide into sphingosine and free fatty acids. In humans, five different ceramidases are known—acid ceramidase, neutral ceramidase, and alkaline ceramidase 1, 2, and 3—which are encoded by five different genes (ASAH1, ASAH2, ACER1, ACER2, and ACER3, respectively). Notably, the neutral ceramidase N-acylsphingosine amidohydrolase 2 (ASAH2) shows considerable differences between humans and animals in terms of tissue expression levels. Besides, the subcellular localization of ASAH2 remains controversial. In this review, we sum up the results obtained for identifying gene divergence, structure, subcellular localization, and manipulating factors and address the role of ASAH2 along with other ceramidases in human diseases.

Funder

Ministry of Science and Technology, Taiwan

Kaohsiung Medical University

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3