Assessing the Impacts of Autonomous Vehicles on Road Congestion Using Microsimulation

Author:

Malibari AreejORCID,Higatani Akito,Saleh Wafaa

Abstract

The introduction of autonomous vehicles has been considered as a possible option for reducing traffic congestion in many transport studies. Many types of models, in particular car-following microsimulation models have been adopted in most studies. The impacts of autonomous vehicles (AVs) on congestion, however, have not yet been concluded. This could be because different researchers use different forms of car-following models to assess these impacts, or because the utilised modelling approaches and their parameters are different in different studies. In particular, two of the important parameters that are associated with car-following models are the used values for maximum acceleration and the average desired time gaps. While the values of these parameters can be adjusted and controlled by the ACC controllers in the AV, they can also be controlled by the users. Therefore, assigning unrealistic values to these parameters could well result in unrealistic conclusions. This paper investigated the impacts of the maximum acceleration and the average desired time gaps on congestion levels using the loss-time indicator. The analysis was carried out on the Hanshin expressway in Japan and was tested and assessed using the Helly (FACC) car-following microsimulation model. This includes estimating the values of the desired time gap from real traffic time-gap distributions. The Hanshin expressway is an urban toll highway of 273 km that extends from Osaka to Kobe, representing the Hanshin area in Japan. The Hanshin highway serves a huge traffic volume that consists of private and freight vehicles that operate within the Hanshin area. This area represents one of three major municipal areas in Japan including Tokyo and Nagoya. A total of 740,000 vehicles per day travel on the expressway. As a result, there is significant congestion on the Hanshin expressway. There have been various plans put in place to ease congestion ranging from building new roads to the implementation of traffic-demand-management measures. However, the predictions of the impacts of such measures do not provide any evidence that they would ease traffic congestion. Other possible measures that could be investigated for easing traffic congestion include technology-based solutions such as autonomous vehicles. The modelling results recommend that the results obtained from microsimulation models should be taken with care, and good attention should be paid to the parameters used and their values in the model. The values assigned to driving-behaviour parameters, the maximum values of acceleration, and the time-gap settings, for example, control the final outcomes of the models.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Profile Convoy Disruptions: Exploring Socioeconomic and Environmental Ramifications of Road Closures;Sustainability;2024-06-21

2. Extending the decision-making process during yellow phase from human drivers to autonomous vehicles: A microsimulation study with safety considerations;Journal of Traffic and Transportation Engineering (English Edition);2024-04

3. A Reliable V2V Communication: An Autonomous Perspective;2023 5th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3