New Advances in Bioelectrochemical Systems in the Degradation of Polycyclic Aromatic Hydrocarbons: Source, Degradation Pathway, and Microbial Community

Author:

Feng Yimeng1,Zhu Xuya1,Huang Xiulin1,Li Fengxiang1

Affiliation:

1. Key Laboratory of Pollution Process and Environmental Criteria at Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China

Abstract

Because of their high persistence, polycyclic aromatic hydrocarbons (PAHs) are found in a wide range of settings and pose a health risk to both humans and other organisms. Degradation of PAHs is an essential part of environmental management. By combining biological metabolism and electrochemical processes, bioelectrochemical systems (BESs) can degrade PAHs and provide important applications by converting the chemical energy of pollutants into electrical energy for energy conversion and recovery. This review provides a comprehensive introduction to PAH degradation by BESs, including PAH sources, degradation effects of BESs, performance enhancement methods, degradation pathways, and dominant microorganisms. By focusing on the relevant research in recent years, the main innovative research focuses on the optimization of the configuration, the electrode preparation, and the media additions to improve the removal performance of PAHs. It demonstrates the potential of BESs in the field of environmental remediation, especially their effectiveness in treating difficult-to-degrade pollutants such as PAHs, by concentrating on the application and mechanism of BESs in PAH degradation. This review is intended to provide the inexperienced reader with an insight into this research area and to point out directions for future research, especially in the design optimization of BESs and microbial community analysis.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3