3β-Hydroxy-5β-hydroxy-B-norcholestane-6β-carboxaldehyde (SEC-B) Induces Proinflammatory Activation of Human Endothelial Cells Associated with Nitric Oxide Production and Endothelial Nitric Oxide Synthase/Caveolin-1 Dysregulation

Author:

Nasoni Maria GemmaORCID,Benedetti SerenaORCID,Crinelli RitaORCID,Palma FrancescoORCID,Canonico BarbaraORCID,Monittola FrancescaORCID,Zerbinati Chiara,Iuliano Luigi,Luchetti Francesca

Abstract

Oxysterols are a family of 27-carbon cholesterol oxidation derivatives found in low-density lipoproteins (LDLs) and atherosclerotic plaques where they trigger several biological responses involved in the initiation and progression of atherosclerosis. Several pieces of evidence suggest that oxysterols contribute to endothelial dysfunction (ED) due to their ability to alter membrane fluidity and cell permeability leading to inflammation, oxidative stress and apoptosis. The present study aimed to investigate the molecular events occurring in human microvascular endothelial cells (HMEC-1) in response to autoxidation-generated 3β-hydroxy-5β-hydroxy-B-norcholestane-6β-carboxaldehyde (SEC-B) exposure. Our results highlight that SEC-B rapidly activates HMEC-1 by inducing oxidative stress, nitric oxide (NO) production and pro-inflammatory cytokine release. Exposure to SEC-B up to 24 h results in persistent accumulation of the vasodilator NO paralleled by an upregulation of the endothelial nitric oxide synthase (eNOS) enzyme and downregulation of Caveolin-1 (Cav-1) protein levels. Moreover, reduced expression and extracellular release of the vasoconstrictor factor endothelin-1 (ET-1) are observed. Furthermore, SEC-B stimulates the expression of the cytokines interleukin-6 (IL-6) and tumor necrosis factor-like weak inducer of apoptosis (TWEAK). This proinflammatory state leads to increased monocyte recruitment on activated HMEC-1 cells. Our findings add new knowledge on the role of SEC-B in ED and further support its potential implication in atherosclerosis.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3