Platinum Nanoparticles: The Potential Antioxidant in the Human Lung Cancer Cells

Author:

Ismail Noor Akmal ShareelaORCID,Lee Jun XinORCID,Yusof Fatimah

Abstract

Oxidative stress-related conditions associated with lung cells, specifically lung cancer, often lead to a poor prognosis. We hypothesized that platinum nanoparticles (PtNPs) can play a role in reversing oxidative stress in human lung adenocarcinoma A549 epithelial lung cell lines. Hydrogen peroxide (H2O2) was used to induce oxidative stress in cells, and the ability of PtNPs to lower the oxidative stress in the H2O2 treated epithelial lung cell line was determined. The differential capacity of PtNPs to remove H2O2 was studied through cell viability, nanoparticle uptake, DNA damage, ROS production, and antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase). Results indicated that a higher concentration of PtNPs exhibited a higher antioxidant capacity and was able to reduce DNA damage and quench ROS production in the presence of 350 µM H2O2. All antioxidant enzymes’ activities also increased in the PtNPs treatment. Our data suggested that PtNPs could be a promising antioxidant in the treatment of lung cancer.

Funder

Ministry of Higher Education

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3