Preventive Effect of Cocoa Flavonoids via Suppression of Oxidative Stress-Induced Apoptosis in Auditory Senescent Cells

Author:

del Mar Rivas-Chacón Luz,Yanes-Díaz Joaquín,de Lucas Beatriz,Riestra-Ayora Juan IgnacioORCID,Madrid-García RaquelORCID,Sanz-Fernández Ricardo,Sánchez-Rodríguez CarolinaORCID

Abstract

Presbycusis or Age-related hearing loss (ARHL) is a sensorineural hearing loss that affects communication, leading to depression and social isolation. Currently, there are no effective treatments against ARHL. It is known that cocoa products have high levels of polyphenol content (mainly flavonoids), that are potent anti-inflammatory and antioxidant agents with proven benefits for health. The objective is to determine the protective effect of cocoa at the cellular and molecular levels in Presbycusis. For in vitro study, we used House Ear Institute-Organ of Corti 1 (HEI-OC1), stria vascularis (SV-k1), and organ of Corti (OC-k3) cells (derived from the auditory organ of a transgenic mouse). Each cell line was divided into a control group (CTR) and an H2O2 group (induction of senescence by an oxygen radical). Additionally, every group of every cell line was treated with the cocoa polyphenolic extract (CPE), measuring different markers of apoptosis, viability, the activity of antioxidant enzymes, and oxidative/nitrosative stress. The data show an increase of reactive oxidative and nitrogen species (ROS and RNS, respectively) in senescent cells compared to control ones. CPE treatment effectively reduced these high levels and correlated with a significant reduction in apoptosis cells by inhibiting the mitochondrial-apoptotic pathway. Furthermore, in senescence cells, the activity of antioxidant enzymes (Superoxide dismutase, SOD; Catalase, CAT; and Glutathione peroxidase, GPx) was recovered after CPE treatment. Administration of CPE also decreased oxidative DNA damage in the auditory senescent cells. In conclusion, CPE inhibits the activation of senescence-related apoptotic signaling by decreasing oxidative stress in auditory senescent cells.

Funder

Instituto de Salud Carlos III

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3