Metabolite Profiling of Microwave-Assisted Sargassum fusiforme Extracts with Improved Antioxidant Activity Using Hybrid Response Surface Methodology and Artificial Neural Networking-Genetic Algorithm

Author:

Javed Ahsan,Naznin Marufa,Alam Md. BadrulORCID,Fanar AlshammariORCID,Song Bo-Rim,Kim SunghwanORCID,Lee Sang-HanORCID

Abstract

Sargassum fusiforme (SF) is a popular edible brown macroalga found in Korea, Japan, and China and is known for its health-promoting properties. In this study, we used two sophisticated models to obtain optimized conditions for high antioxidant activity and metabolite profiling using high-resolution mass spectrometry. A four-factor central composite design was used to optimize the microwave-assisted extraction and achieve the maximum antioxidant activities of DPPH (Y1: 28.01 % inhibition), ABTS (Y2: 36.07 % inhibition), TPC (Y3: 43.65 mg GAE/g), and TFC (Y4: 17.67 mg CAE/g), which were achieved under the optimized extraction conditions of X1: 47.67 %, X2: 2.96 min, X3: 139.54 °C, and X4: 600.00 W. Moreover, over 79 secondary metabolites were tentatively identified, of which 12 compounds were reported for the first time in SF, including five phenolic (isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate, 3,4-dihydroxyphenylglycol, scopoletin, caffeic acid 4-sulfate, and cinnamoyl glucose), two flavonoids (4’,7-dihydroxyisoflavone and naringenin), three phlorotannins (diphlorethohydroxycarmalol, dibenzodioxin-1,3,6,8-tetraol, and fucophlorethol), and two other compounds (dihydroxyphenylalanine and 5-hydroxybenzofuran-2(3H)-one) being identified for the first time in optimized SF extract. These compounds may also be involved in improving the antioxidant potential of the extract. Therefore, optimized models can provide better estimates and predictive capabilities that would assist in finding new bioactive compounds with improved biological activities that can be further applied at a commercial level.

Funder

National Research Foundation of Korea

Ministry of Science

ICT

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Reference52 articles.

1. Bitter melon (Momordica charantia): A natural healthy vegetable;Int. J. Food Prop.,2018

2. Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: A review;J. Photochem. Photobiol. B Biol.,2016

3. Structural characterization and effect on anti-angiogenic activity of a fucoidan from Sargassum fusiforme;Carbohydr. Polym.,2016

4. Characterization of biosynthesized chitosan nanoparticles from Penaeus vannamei for the immobilization of P. vannamei protease: An eco-friendly nanobiocatalyst;Int. J. Food Prop.,2017

5. Pharmacological applications of phlorotannins: A comprehensive review;Curr. Drug Discov. Technol.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3