Processability and Separability of Commercial Anti-Corrosion Coatings Produced by In Situ Hydrogen-Processing of Magnetic Scrap (HPMS) Recycling of NdFeB

Author:

Grau Laura12ORCID,Fleissner Peter2,Kobe Spomenka3ORCID,Burkhardt Carlo2ORCID

Affiliation:

1. Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia

2. Institute of Precious and Technology Metals (STI), Pforzheim University, Tiefenbronner Straße 65, 75175 Pforzheim, Germany

3. Department for Nanostructured Materials (K7), Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia

Abstract

The recycling of NdFeB magnets is necessary to ensure a reliable and ethical supply of rare earth elements as critical raw materials. This has been recognized internationally, prompting the implementation of large-scale legislative measured aimed at its resolution; for example, an ambitious recycling quote has been established in the Critical Raw Materials Act Successful recycling in sufficient quantities is challenged by product designs that do not allow the extraction and recycling of these high-performance permanent magnets without excessive effort and cost. This is particularly true for smaller motors using NdFeB magnets. Therefore, methods of recycling such arrangements with little or no dismantling are being researched. They are tested for the hydrogen-processing of magnetic scrap (HPMS) method, a short-loop mechanical recycling process. As contamination of the recycled material with residues of anti-corrosion coatings, adhesives, etc., may lead to downcycling, the separability of such residues from bulk magnets and magnet powder is explored. It is found that the hydrogen permeability, expansion volume, and the chosen coating affect the viable preparation and separation methods as recyclability-relevant design features.

Funder

European Union’s Horizon EU Research and Innovation Programme

EIT RawMaterials

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3