Increasing the Impact Toughness of Cellulose Fiber Reinforced Polypropylene Composites—Influence of Different Impact Modifiers and Production Scales

Author:

Mihalic MatthiasORCID,Sobczak LukasORCID,Pretschuh Claudia,Unterweger ChristophORCID

Abstract

While cellulose fiber reinforced polypropylene (PP) composites typically offer good stiffness and strength in combination with ecological benefits and a high potential for lightweight construction, they often require measures taken to improve their impact performance. In this work, the influence of different types of impact modifier on the mechanical performance of a PP–cellulose composite was systematically investigated, with a particular focus on the improvement of the notched impact strength and the accompanying loss of stiffness. Among the tested impact modifiers, ethylene-octene copolymers appeared to be the most suitable class to achieve a good overall performance. A high modifier viscosity increased its potential to improve the notched impact strength of the composite. Additionally, composite production on a larger scale improved the impact performance without significantly affecting the tensile properties. Several composites from this study surpassed the overall mechanical performance of a benchmark commercial PP–cellulose composite. While the impact strength of commercial high-impact PP–talc composites could not be reached, the considerably lower density of the PP–cellulose composites is worth mentioning.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3